MTH 301 Quiz Solutions

1. Find up to isomorphism:
(a) All abelain groups of order 16.
(b) Two non-abelian groups of order 16, that are direct products.
(c) Two groups of order 16 that are non-trivial semi-direct products.

Solution. (a) Using the Classification Theorem for finitely-generated abelian groups, we see that there are 5 abelian groups of order 16 up to isomorphism, and they are
(i) \mathbb{Z}_{16}
(ii) $\mathbb{Z}_{8} \times \mathbb{Z}_{2}$
(iii) $\mathbb{Z}_{4} \times \mathbb{Z}_{4}$
(iv) $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{4}$
(v) $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$

These groups are non-isomorphic for the following reasons:

- The integer $16=2^{4}$ factors precisely in five different ways (as listed above), and
- $\mathbb{Z}_{m} \times \mathbb{Z}_{n} \cong \mathbb{Z}_{m n} \Longleftrightarrow \operatorname{gcd}(m, n)=1$.
(b) Since D_{8} and Q_{8} are non-abelian and non-isomorphic groups of order 8, the direct products $D_{8} \times \mathbb{Z}_{2}$ and $Q_{8} \times \mathbb{Z}_{2}$ are non-abelian groups of order 16 .
(c) We know from class that the metacyclic group $D_{16} \cong \mathbb{Z}_{2} \ltimes{ }_{-1} \mathbb{Z}_{8}$ is a non-trivial semi-direct product of order 16 .
Since $\phi(4)=2$, we have $\operatorname{gcd}(4, \phi(4))>1$, and consequently, there exists a non-trivial semi-direct product of the form $\mathbb{Z}_{4} \ltimes \mathbb{Z}_{4}$. An explicit description of the structure of this group is left as an exercise.

2. Show that a group of order 36 is non-simple.
(c) Since $36=2^{2} 3^{2}$, the First and Third Sylow's Theorems imply that either $n_{3}=1$ or $n_{3}=4$. If $n_{3}=1$, then there is a unique subgroup H
of order 9, and so the Second Sylow Theorem would imply that $H \unlhd G$, showing that G is non-simple.
Suppose that $n_{3}=4$. We give two different methods for establishing the result.
Method 1: Let N and K be two distinct Sylow 3-subgroups. Then $N \cap K$ has to be a subgroup of order 3, for if $N \cap K=\{1\}$, then $|N K|=81$, which is impossible. Furthermore, since

$$
[N: N \cap K]=[K: N \cap K]=3,
$$

we have that

$$
N \cap K \unlhd N \text { and } N \cap K \unlhd K .
$$

Consider the normalizer $N_{G}(N \cap K)$ of $N \cap K$ in G. Note that as $N, K \leq N_{G}(N \cap K)$ (Why?), we have that

$$
N K \subset\langle N \cup K\rangle \leq N_{G}(N \cap K)
$$

But since $|N K|=27$ and $\left|N_{G}(N \cap K)\right| \mid 36$, we have that $\left|N_{G}(H \cap K)\right|=$ 36. Therefore, $N_{G}(H \cap K)=G$, so $N \cap K \unlhd G$, confirming the nonsimplicity of G.
Method 2: Consider the set $\operatorname{Syl}_{3}(G)$ of all Sylow 3-subgroups of G and the action $G \curvearrowright^{c} \operatorname{Syl}_{3}(G)$. This action induces a permutation representation

$$
\psi_{c}: G \rightarrow S_{4}
$$

If Ker ψ_{c} is trivial, then $G \hookrightarrow S_{4}$, which is impossible as $|G| \nmid 24$. Hence, $\operatorname{Ker} \psi_{c}$ is a nontrivial normal subgroup of G, which shows that G is non-simple.
3. Without using the Feit-Thompson Theorem, show that a group of order $p q$, where p and q are distinct primes, is solvable.
Solution. Let G be a group of order $p q$, where p and q are distinct primes. Then by the First Sylow Theorem, G has a subgroup H of order p and a subgroup K of order q, which are both abelian. Without loss of generality, we may assume that $p<q$. Since $[G: K]=p$, we have that $K \unlhd G$, and we obtain a normal series

$$
1 \unlhd K \unlhd H K=G
$$

where both the factor groups are abelian. This shows that G is solvable.

